微软这次做了个 AI,让程序员提前下班,提早下岗

时间:2021-07-02 08:57:11

导语:GPT-3 这个自然语言处理 AI 在去年「出圈」了,被公认是继 AlphaGo 之后「人工智能史上又一里程碑」。它在互联网上「阅读」了 5000 亿词,模型达到 1750 亿参数,从而变得通用。但给 AI 硬灌数据,实在是烧钱耗力。但好在,GPT-3 正在孕育出能够实现商业化的后代。

GPT-3 这个自然语言处理 AI 在去年「出圈」了,被公认是继 AlphaGo 之后「人工智能史上又一里程碑」。它在互联网上「阅读」了 5000 亿词,模型达到 1750 亿参数,从而变得通用。但给 AI 硬灌数据,实在是烧钱耗力。但好在,GPT-3 正在孕育出能够实现商业化的后代。

就在刚刚,GitHub、OpenAI、微软联合打造了一个全新的代码生成 AI:GitHub Copilot(以下简称为 Copilot)。

简单来说,Copilot 可以根据程序员的注释写代码,自动补全代码,提供与代码匹配的测试,还能生成多个备选方案的代码供选择。GitHub 表示,Copilot 生成的代码大部分是原创的。

目前,Copilot 正在测试专供 Visual Studio Code 的扩展,一旦达到可用状态,未来会成为微软编程产品里的收费项目。Copilot 可以说是 OpenAI 接受微软 10 亿美元投资以来的首个重大成果。

还有行业人士表示,这代表 AI 开始在编程工作中发挥作用,软件开发领域的「第三次工业革命」似乎正缓缓揭开序幕。

和你结对编程的,换成了Copilot

在此之前,程序员写不出代码,一般会到软件开发领域的问答网站 Stack Overflow「借鉴」,或者求助于一些代码自动补全工具。然而,传统 IDE 基本都使用搜索方法进行补全,换句话说,网上有的,才能被抓过去补全。

但 Copilot 是另一种思路,它直接靠 AI 理解程序员的需求。Copilot 不仅仅是模仿以前见过的代码,它还会分析文档中的字符串、注释、函数名称以及代码本身,从而生成新的匹配代码,包括之前调用的特定函数。

脱胎自 GPT-3 的 OpenAI Codex,接受过公开源代码和自然语言的培训,能理解编程语言和人类语言。所以,Copilot 对语言理解和转换有极高的天赋。

GitHub 给 Copilot 的官方定义是「AI 结对编程员」。「结对编程」(pair programming)是一种软件开发方法,两个程序员在一个计算机上共同工作。一个人输入代码,而另一个人审查他输入的每一行代码。输入代码的人称作驾驶员,审查代码的人称作观察员。两个程序员经常互换角色。GitHub 认为 Copilot 是进化版的「结对编程」,在未来帮程序员查缺补漏的,将会换成 AI。

此外,Copilot 还能辅导新手写代码,可以帮助他们找出错误、学习新框架,省去大量查资料的时间。

OpenAI 首席技术官 Greg Brockman 表示,将在今年夏末通过 API 发布 Codex。

Github CEO Nat Friedman 提到,「OpenAI Codex 对于人们的代码使用习惯有着广泛了解,而且在代码生成能力上远远超过 GPT-3,这要归功于它在训练中接触到的大量公共源代码数据集。GitHub Copilot 则适用于多种框架和语言,但目前的技术预览版主要面向 Python、JavaScript、TypeScript、Ruby 以及 Go」。具体来说,OpenAI 在 GPT-3 的基础上生成了 Codex 算法,Codex 在从 GitHub 那里提取出来的 TB(terabyte)级公开代码以及英语语言示例中得到训练。基于 Codex 算法,编程 AI Copilot 诞生了。

也就是说,Copilot 比 GPT-3 诞下的专为代码生成设计的后代。在运行过程中,Copilot 编辑器的扩展插件将程序员的注释和代码发送到 GitHub Copilot 服务端,然后该服务使用 OpenAI Codex 来生成对代码的建议。

目前相比于市面上一些编程辅助工具,Copilot 的上下文理解能力要强大得多。无论是在文档字符串、注释、函数名还是代码主体中,Copilot 都能根据编程者已写出的上下文生成匹配的代码。

不看广告,看「疗效」

Friedman 说,GitHub 的数百名开发者在编码时,整天都在使用 Copilot 功能,他们中的大多数人都接受了 AI 的建议,没有关闭该功能。

但就目前来看,Copilot 提供建议的准确率似乎不高。GitHub 对一组 Python 函数进行了基准测试,测试团队清除了函数并要求 Copilot 填充它们。模型在第一次尝试正确率是 43%,经过 10 次尝试后,正确率达到了 57%。团队表示,之后 Copilot 还将进行多次训练和测试,准确率会进一步提升。但据一些程序员的说法,这种自动生成的代码工具要「好用」有个前提,就是能精确描述了函数需要实现的功能,不然后续的调试会是更耗时的工作。